

BS Collaborate

Disclaimer

THIS SOFTWARE DISCRIPTION IS PROVIDED BY BITMANAGEMENT SOFTWARE GMBH
"AS IS" WITHOUT WARRANTY OF ANY KIND AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
ARE DISCLAIMED. NO WARRANTY FOR ANY PROBLEM ARISING OUT OF A DOWNLOAD
AND/OR USE OF THIS SOFTWARE CAN BE UNDERTAKEN. SUBJECT TO REGULATORY
AND ANY OTHER OBLIGATIONS AND LIABILITIES WHICH ARE NOT PERMITTED TO BE
EXCLUDED, UNDER NO CIRCUMSTANCES SHALL BITMANAGEMENT SOFTWARE GMBH
OR AFFILIATED PARTIES BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY SPECIAL,
PUNITIVE, INCIDENTAIL INDIRECT OR CONSEQUENTIAL DAMAGE. THE DOWNLOAD
AND/OR USE OF THIS SOFTWARE IS RESTRICTED TO NONCOMMERCIAL USE AND AN
EVALUATION PERIOD. ANY ADDITIONAL FEE BY THIRD PARTIES THAT MIGHT OCCUR
FOR DOWNLOAD OR USAGE OF THE SOFTWARE HAS TO BE BORN BY THE PARTY
DOWNLOADING OR USING THE SOFTWARE.

Bitmanagement Software GmbH
Oberlandstraße 26
D-82335 Berg
Germany
Phone: 0049(0)8151-971708
Fax: 0049(0)8151-971709
E-mail: info@bitmanagement.de
Web: www.bitmanagement.de

Table of Contents

Table of Contents .. 3

1 Collaborate server - client structure .. 4

2 Supported Products ... 5

3 BS Collaborate Startup ... 7
3.1 Authoring a 3D scene for BS Collaborate ... 7
3.2 Sharing Events between Clients / Maintainung Scene State 8
3.3 Distributed Environment .. 10
3.4 Naming EventStreamSensors .. 10
3.5 Simple Server Side Calculations .. 10
3.6 States versus Events ... 10

4 Connection to the server with Connection node ... 12

5 Avatar position and chat messages with BSCollaborate 13

6 Shared Events available with EventStreamSensor .. 15

7 BS Collaborate server ... 18

8 Server configuration file .. 19
8.1 Storing events with database .. 19
8.2 Storing events with a file system .. 20
8.3 Summary of the configuration file... 20

9 System Requirement ... 21

10 Download ... 22

This description is focusing on advanced person with basic knowledge in
VRML/X3D/Collada. It is also advantageous to have access to the BS SDK.

1 Collaborate server - client structure

The Bitmanagement Software collaborate System is build up on the Web3D
proposal for the Networking component (see networkSensor.html). These nodes
allow VRML/X3D scenes to connect to arbitrary servers or direct links between
two VRML/X3D players. With these nodes you are able to manipulate virtual
objects collaboratively in real time. The Bitmanagement Software node
extension allows you to communicate during these manipulations. For permit
access only registered users you are able to connect your user database to the
BS Collaborate server. With the internal login interface there is no hassle of
external user management with websites or something comparable. These multi
user features are included in BS Contact (VRML/X3D/Collada) 7.1. This means
that on client side only the BS Contact 7.1 must be installed to connect with a
multi user environment.

2 Supported Products

Professional CAD Systems are able to export 3D models to VRML/X3D. With
the BS Collaborate Software you can discuss about the object or measure,
describe a construct virtual object interactive and collaboratively in 3D. You can
handle the communication over the supplied text chat or e.g. per third party
voice chat.

Example for a collaborative measurement

With the BS Collaborate System you are also able to create your own multi user
environment with entertainment content. Make advertises or presentations over
the internet without being on the same place.

Example for a multi user soccer game

Supported Features in this version:

 – Platform independent server

 – Shared Events

 – Support customized Login screen in 3D

 – Text Chat included

 – Support customized Chat display in 3D

 – Simple server side computation

 – Each client has its own Session number for client identification.

 – Each event is storable in database or file system

 – Compatible with Web3D network proposal

Many more features under development.

3 BS Collaborate Startup

3.1 Authoring a 3D scene for BS Collaborate

On the scene authoring side, the BS Collaborate server implementation is
based on a node that specifies the connection parameters for the server
connection and a node that handles session based messages to/from the
server. These messages inform the scene when a user has joined, when other
users move, about chat messages, etc. The scene can then respond to these
messages, e.g. by showing a buddy list.

An example scene may look like this:
DEF MU BSCollaborate
{
 connection NetConnection
 {
 address "test.bitmanagement.de"
 port 12345
 }
}

ROUTE SomeScript.credentials TO MU.tryLogin
ROUTE MU.loginResult TO SomeScript.loggedIn
...
After initialization the BSCollaborate node uses the associated Connection node to
connect to the server. It than waits untill reception of the user name and
password on the tryLogin field. When it receives those, it uses them to
authenticate with the server and establish an identity. This way a 3D scene can
show a login screen asking for login and password directly in the 3D window.
No external HTML form or similar is required, however will probably later be
supported. Alternatively a Script node could just send some constant values to
BSCollaborate.tryLogin if no user identification is required.

After a user has logged in, the BSCollaborate node populates its users field with
nodes describing all other users in currently logged in. For each user in the
scene an event is sent over the hasJoined starting with the own user. The
BSCollaborate node in other clients will send add a record to their users field and
send an event over their hasJoined field, so that all clients are informed of our
arrival.

Similarly, if later during a session a new user joins or leaves the session, this is
indicated via hasJoined and hasLeft, and the users is updated by adding a new
node or removing the one corresponding to a leaving user. This way a 3D
scene can freely query the list of currently connected users and respond to
changes in that list, and implementing things like a buddy list.

In the same manner chat messages that the scene collects from an input line in
3D - maybe displayed on a HUD - can be sent to the meSay field and will then be
distributed to other clients. If another users utters some chat message, this will
be indicated via the hasSaid field. The 3D scene can then display chat
messages, e.g. on a HUD, as balloon above avatars, or in whatever way they
like.

The node that describes a user participating in the session looks as follows:
UserData
{
 field SFInt32 idx -1
 field SFString nickname ""
 field SFString avatarString ""

 eventOut SFString loginState

 eventOut SFVec3f pos
 eventOut SFRotation ori
 eventOut SFBool isMoving

 eventOut MFString chat

 field SFNode userData NULL
}
The users field of the BSCollaborate node is filled with nodes of that signature, and
the hasJoined, hasLeft, hasMoved and hasSaid, which are of type SFNode emit these
nodes. A scene can either respond to the events of the BSCollaborate node or
build individual routes directly from the eventOut fields of the UserData.

3.2 Sharing Events between Clients / Maintainung Scene State

The EventStreamSensor node is used to synchronize scene states with other
clients. Such a scene state may be the state of a door that can be open or
closed, or the position of the ball in a soccer game. Instead of calculating e.g.
the ball position by a Script node and sending it to a Transform node via a ROUTE
statement, the event is sent to an eventIn field of the EventStreamSensor node.
The EventStreamSensor node sends the event to the BS Collaborate server, which
then sends it to all other clients, including the originating one. Then the
EventStreamSensor in all clients sends the event on an eventOut field to the proper
Transform node.Similar to a Script node the EventStreamSensor allows to add
arbitrary fields, e.g:
DEF Streamer EventStreamSensor
{
 eventIn SFVec3f set_BallPos
 eventOut SFVec3f BallPos_changed
 eventIn SFBool set_DoorState

 eventOut SFBool DoorState_changed
}

Similar to a Script node the EventStreamSensor allows to add arbitrary fields.
EventIns and eventOuts are associated if they have the same base name. If the
scene sends a value to a set_* eventIn field in one client, the corresponding
*_changed eventOut field emits this value in all clients.

The following is a scene without multi-user capabilities:
DEF Calculator Script
{
 eventOut SFVec3f BallPosition

 url "vrmlscript: ... "
}

DEF TrBall Transform
{
 children Shape { ... geometry of the ball }
}

ROUTE Calculator.BallPosition TO TrBall.Transform

It consists of a Script node, a Transform node and a ROUTE transporting the
calculations from the Script to the Transform. For making this multi-user one will
add an EventStreamSensor and will break up the ROUTE into two ROUTEs that go
through the EventStreamSensor node:
DEF Calculator Script
{
 eventOut SFVec3f BallPosition

 url "vrmlscript: ... "
}

DEF TrBall Transform
{
 children Shape { ... geometry of the ball }
}

DEF Streamer EventStreamSensor
{
 connection USE Conn # the same Connection node as used in the BSCollaborate node.

 eventIn SFVec3f set_BallPos
 eventOut SFVec3f BallPos_changed

 ... other fields if necessary
}

ROUTE Calculator.BallPosition TO TrBall.translation
ROUTE Calculator.BallPosition TO Streamer.set_BallPosition
ROUTE Streamer.BallPosition_changed to TrBall.translation

This way if the Calculator node in one client calculates a new ball position, it will
be distributed to all TrBall Transform nodes in all clients.

3.3 Distributed Environment

Care must be taken because the system is now a distributed environment.
Although the scene contains only one Calculator node, there is an instance of it in
every client, and each of them may calculate a position animation for the ball at
the same time. In the case of a soccer game this can be avoided by a rule that
only the Calculator node of that client which has shot the ball can calculate the
trajectory of the ball.

3.4 Naming EventStreamSensors

For more complex scenes, EventStreamSensor contains a field SFString name, so
that multiple EventStreamSensors, which may be located in different PROTOs can
communicate events independently.

3.5 Simple Server Side Calculations

Besides the set_ prefix for eventIn fields, the EventStreamSensor also allows other
prefixes. These trigger simple server side calculations. As an example, if an
event is sent to toggle_DoorOpen, the SFBool value DoorOpen will be toggled, and
the result will be sent to all clients via the DoorOpen_changed eventOut field. This
way, the touchTime of a TouchSensor connected with the door geometry can be
sent directly to the toggle_DoorOpen state of an EventStreamSensor and the
DoorOpen_changed eventOut field can be sent to a Script node that updates the door
state in all clients. The most common prefixes are add_ and dec_ for most SF
values, inc_ and dec_ for SFInt32 values, and append_ for MF values.

3.6 States versus Events

BS Collaborate makes a distinction between state variables and events. State
values are values that may change over time, and a user joining the scene
needs an update of the current state of all these values.

State variables are stored by the server and the server can do calculations like
toggling an SFBool, or incrementing an SFInt32. Currently states are stored in
memory and are not preserved when the server is restarted, but a later version
may store them in a data base. For states it is not necessary that every update
comming from a client is forwarded directly to all other clients, only the most
recent value is important. Therefore a later version of the BS Collaborate server

may reduce bandwidth requirements by forwarding only a certain number of
updates per second, which can be specified by the content author.

Events, on the other hand, will just be forwarded verbatim by the server to the
other clients. Events can be used for things like synchronizing which client is
allowed to calculate an animation that is then distributed to all other clients.

State values are sent to the server via the set_ prefix, and received from the
server via the _changed postfix. They can be modified via prefixes like toggle_ or
add_. Events are sent via the evt_ prefix and are received via the _evt postfix.

4 Connection to the server with Connection node
The Connection node is responsible for the connection to the multi user server.

NetConnection
{
 field SFBool enabled TRUE
 eventOut SFBool isActive
 field MFString address "localhost"
 field SFInt32 port 0
 field SFInt32 protocol 0
 field SFTime timeOut 0
 field SFBool secure TRUE
}

With the field enabled you can activate or deactivate the connection to the
server. If a connection to the server has been established it is indicated through
the field isActive.

The server address is defined in the field address and the including port number
for the connection is specified in the field port.

The field protocol indicates which version of the protocol controls the
communication between server and client. The list below comprises the
available protocols.

protocol number Protocol name

1 HTTP
2 TCP/IP
3 UDP/IP
4 BSMUP (BS Multi User Protocol)

The fields TimeOut and secure are not implemented now and will come later.

5 Avatar position and chat messages with BSCollaborate

5 Avatar position and chat messages with BSCollaborate
The node BSCollaborate is a node that handles the user login and logout. It is
also managing the position of each connected user. This node is managing the
chat communication between the users as well.

BSCollaborate
{
 field SFNode connection
 eventIn MFString tryLogin
 eventOut SFBool loginResult
 eventIn SFTime logOut
 eventIn SFVec3f userPos
 eventIn SFRotation userOri
 field MFNode users []
 eventOut SFNode hasJoined
 eventOut SFNode hasLeft
 eventOut SFNode hasMoved
 eventIn MFString meSay
 eventOut SFNode hasSaid
}

The field connection must point to a connection node. See an example in
chapter 5.1.

With the MFString field tryLogin a user can connect to the specified server in
the referenced node connection. The first element of the tryLogin field is the
login name and the second element is the password.
tryLogin=('loginname','password','')

The login result is available in the field loginResult. If the the login was
successful the value of the field is TRUE and the field tryLogin will be ignored. If
the value is FALSE another try is possible.

The two fields userPos and userOri are events to the server from the own
position and orientation of the avatar. You can send these events using a route
from a ProximitySensor. The code below is an example to show how to
calculate the user position.

 DEF Proxi ProximitySensor
 {
 size 1e30 1e30 1e30
 }
 ROUTE Proxi.position_changed TO BSCollaborarte.userPos
 ROUTE Proxi.orientation_changed TO BSCollaborarter.userOri

The MFNode field users contains information about each logged-in user. The
first element in the list is always your own user. The structure of the node is

 UserData
 {
 field SFInt32 idx -1
 field SFString nickname ""
 field SFString avatarString ""

 eventOut SFString loginState

 eventOut SFVec3f posistion
 eventOut SFRotation orientation
 eventOut SFBool isMoving

 eventOut MFString chat

 field SFNode userData NULL
 }

The available states of loginState are:
 joined: Only for other users.
 logged-in: Only for the own user.

With the eventOut hasJoined the server is sending the information of the user
which has joined the server. The node structure is the same as the one of the
node users.

The node hasLeft is useful to handle users which are logged-off from the server.
The node contains useful information about the those users.

With the node hasMoved you can identify which avatar is moving. The node
structure is again the same as in the node users.

For chat implementation you can use the fields meSay and hasSaid. With the
field meSay you can send a text message to the server. If the message has
been successfully delivered to the server, it sends back the message to the field
hasSaid. The node structure of hasSaid is like users. After receiving the same
message from the server you can be sure that the message was delivered to
other users in this virtual world.

6 Shared Events available with EventStreamSensor
With the node EventStreamSensor you can create shared events between the
users and the server. This means you can manipulate virtual objects in a
collaborative environment. This node receives the changed field values from
server and is sending new field values to the server.

EventStreamSensor
{
 field SFNode connection
 eventOut SFBool initialized

 fields
 ...
}

The field connection must point to a connection node. All events will
communicate with the server address in this node.

With the field initialized you can make sure that all initial values are received
and the server has finished sending.

Each EventStreamSensor can handle an unlimited number of different fields.
Each variable has a prefix or a suffix. The following list of available pre-/suffix
explains their functionality.

List of prefix
 set_ : set the value
 add_ : add the specific value to the variable. Result value is stored on
server.
 inc_ : increase the number by one. Result value is stored on server.
 sub_ : decrease the number by one. Result value is stored on server.
 evt_ : unstore event to the server and the server is sending this event
 to all clients

List of suffix
 _changed : Indicates a stored event from server
 _evt : This value comes from the server and was not stored.

A list of variable types and their available prefixes:

SFBool set_ toggle_(SFTime) setTrue_(SFTime) setFalse(SFTime)
 and_(SFBool) or_(SFBool) inh_(SFBool) xor_(SFBool)
 equ_(SFBool)
SFColor set_
SFColorRGB set_
SFDouble set_ add_ sub_
SFFloat set_ add_ sub_
SFImage set_

SFInt32 set_ add_ sub_ inc_(SFTime/SFBool)
 dec_(SFTime/SFBool)
SFNode set_
SFRotation set_ add_
 sub_ (is more a multiplication and a inverse- multiplication operation)
SFString set_ cat_
SFTime set_ add_ sub_
SFVec2f set_ add_ sub_
SFVec2d set_ add_ sub_
SFVec3f set_ add_ sub_
SFVec3d set_ add_ sub_
SFVec4f set_ add_ sub_
SFVec4d set_ add_ sub_

MF fields use the same methods as SF fields, plus an append_, which accepts
an SF value or an MF value. If an MF field receives an SF via set_, their type
stays MF, but the NumberOfElements becomes 1. If an MF field receives an SF
via a method other than set_ and other than append_, then the value influences
all the elements of the current value, i.e. NumberOfElements does not change.
If an MF field receives an MF via a method other than set_ and other than
append_, then the current value is extended if the received value has more
elements, but is not truncated if the received value has less. The operation
however influences only the first N elements of the current value, with N ==
NumberOfElements of the receive value. This applies only if no other mode
makes more sense for the given operation. If an MF field receives an MF via
set_, then the current value is set to the receive value, and its
NumberOfElements changes to the one of the receive value.

MFBool set_ append_(SFBool or MFBool)
MFColor set_ append_(SFColor or MFColor)
MFColorRGB set_ append_(SFColorRGB or MFColorRGB)
MFDouble set_ append_(SFDouble or MFDouble)
MFFloat set_ append_(SFFLoat or MFFLoat)
MFImage set_ append_(SFImage or MFImage)
MFInt32 set_ append_(SFInt32 or MFInt32)
MFNode set_ append_(SFNode or MFNode)
MFRotation set_ append_(SFRotation or MFRotation)
MFString set_ append_(SFString or MFString)
MFTime set_ append_(SFTime or MFTime)
MFVec2d set_ append_(SFVec2d or MFVec2d)
MFVec2f set_ append_(SFVec2f or MFVec2f)
MFVec3d set_ append_(SFVec3d or MFVec3d)
MFVec3f set_ append_(SFVec3f or MFVec3f)

In the following EventStreamSensor example you can find the notation of this
sensor.

 EventStreamSensor
 {
 field SFNode connection IS NetConn
 eventOut SFBool initialized

 eventIn SFVec3f set_BallDestPos #stored
 eventOut SFVec3f BallDestPos_changed

 eventIn SFBool evt_ResetBall #not stored
 eventOut SFBool ResetBall_evt

 eventIn SFTime inc_GoalA #stored
 eventOut SFInt32 GoalA_changed
 }

7 BS Collaborate server

The Bitmanagement Software Collaborate Server was built to handle multiple
connections from the BS Contact 7.1 clients. Its task is to manage the login
requests, user avatars and events from the connected clients. In order to store
persistent events the server has the ability to connect to different ODBC SQL
databases or write the events in a file system as a fall back. An existing user
databases can be used as the database that stores user accounts. This can be
configured in the configuration file. With this file you can customize the server
and adjust proprieties to your needs. You can expand the functionality of the
server by writing your own server side script. These scripts can compute
various and add functionality to the multi-user environment.

8 Server configuration file

8 Server configuration file
The server configuration file is a human readable text file. It will be read and
parsed at the start up of the server. With this file you are able to configure and
customize the server in various ways. The following configurations are possible.

In TCP/IP and UDP networks, a port is an endpoint to a logical connection.
Some ports have numbers that are preassigned to them by the IANA. These
ports are known as well known ports (specified in RFC 1700). In the range from
0 to 1024 are the reserved port numbers for privileged services. That is why it is
recommended that you specify a port number for the BS Collaborate server
above 1024. To define this number you can assign it to this variable

 BS_CollaborateServer.port = [port number]

 Example:
 BS_CollaborateServer.port =12345

your preferred and currently not occupied port.

8.1 Storing events with database

In order to store persistent events from the event stream sensors you can
define in the system how these events will be stored. The recommend way is to
use a SQL database. To get the server working together with the database you
have to install ODBC and the specific ODBC driver for your database. Configure
the DNS with user name and password from the database privileged user and
location of the database server. To use the SQL database as the storage
system, assign the value 'Database' to the variable storage.system:

 storage.system = DataBase

To create a connection to the defined database you have to enter your DNS
name after:

 storage.params.dsn = [DSN Name]
 Example:
 storage.system = MySQL

The database system creates a number of databases and tables. Every scene
will be stored in a separate database and every EventStreamSensor node
identified by streamName in this scene is a table in the corresponding
database. This means you can manage a large number of different scenes and
EventStreamSensors on the server without creating conflicts.

8.2 Storing events with a file system

You are also able to store events in files. This means that every
EventStreamSensor node will be one file in a special directory hierarchy. To use
this storage system you have to use the following parameter:

 storage.system = FileSystem

To define the directory for the storage of the events you have to enter your
preferred path as value. You have to work with double backslashes in the path.

 storage.params.path = [directory path]
 Example:
 storage.params.path = "C:\\BS_Collaborate"

This storage system creates a separate folder for each scene. In these folders
every EventStreamSensor is stored as file. You can have many different scenes
and EventStreamSensor without creating conflicts.

8.3 Summary of the configuration file

BS_CollaborateServer.port = [port number] 0-65535
storage.system= [DataBase, FileSystem]
storage.params.dsn = [DSN name]
storage.params.path = [directory path]

9 System Requirement

Internet connection: 56 kbit/s

Client Operation system: Windows 98 SE, Me, 2000, XP und Vista

Server Operation system: Windows 2000, XP und Vista, (embedded) Linux,
 HP-UX, Tru64, Solaris, QNX

Graphic standards: OpenGL 1.1/1.2 and Direct3D (DirectX) 7/8/9

10 Download

http://www.bitmanagement.com

BS Contact 7.1 Client:
http://www.bitmanagement.de/download/playerdownload.en.html#BS_Contact_VRML/X3D

BS Collaborate:

http://www.bitmanagement.de/download/playerdownload.en.html#BS_Collaborate

Tutorial for developing multi user scenes and applications

http://www.bitmanagement.de/developer/collaborate/tutorials/index.html

